

Osgood Schlatter Disease

Growing Pains: Factors influencing assessment and management of Traction Apophysitis

Bixiang (Sean) Cheng

Why Talk About OSD?

- Affects **10-20%** of adolescents^{1,2}

- Develops during growth phases
- Can last up to 2 years in some cases³
- Potential long-term disability into adulthood⁴

Sørensen et al. 2021
 Ciatawi & Dusak 2022
 Bruzda et al. 2023
 Holden et al. 2021

Athletic Implications

- Adolescence is key for athletic development

- OSD impacts sports participation and performance

- May affect long-term career pathways

- Emerging evidence on management

Δ

01 What is OSD?

What is OSD?

- Traction Apophysitis of the tibial tuberosity²

- Microtrauma at immature insertion of patellar tendon⁵

- Can involve surrounding structures (patellar tendon, infrapatellar bursa)⁶
- Tibial tuberosity maturation during adolescence

5

Radiographic Staging

Ehrenborg staging system⁶

- Most commonly used in research literature
- A: Cartilaginous Stage
- B: Ossification centres appear
- C: Fusion w/ tibial epiphysis
- D: Closure of epiphyseal line

Clinical Presentation

Clinical Diagnosis based on⁷

- Body chart: Localised pain at Tibial Tuberosity

- **Behaviour:** Swelling, limping, difficulty squatting/kneeling

- History: Atraumatic, gradual onset
- **Social:** Commonly involving running/jumping sports

Physical Assessment

Observation: Swelling, antalgic gait

Functional: Painful SL squat (isometric & dynamic)

RSC: Pain with resisted knee extension

Palpation: Tenderness and swelling at tibial tuberosity⁷

7. Holden et al. 2024

Differential Diagnosis – Atraumatic Knee Pain

Consider the SMILE Tool (Guldhammer et al. 2021)

Patellar Tendinopathy⁸

- Can be concurrent
- Pain \downarrow with isometrics

Sinding-Larsen-Johansson⁸

- Apophysitis of patellar inferior pole
- Similar presentation, different location

Patellofemoral Pain⁸

- Diffuse anterior knee pain
- Non-specific diagnosis of exclusion

Osteochondritis Dissecans⁹

- Joint effusion, vague pain, catching/locking
 - Refer for imaging if suspected

Role of Imaging?

Common findings:

- Patellar tendon thickening¹⁰
- Fragmentation & Ossicle formation^{1,2}
- Not specific to OSD

Utility:

- Chronic/persistent pain into adulthood²
- Hx of Trauma²
- Guide for surgical decision⁵

Separated ossicle in skeletally mature adult with Hx of OSD https://casereports.bmj.com/content/bmjcr/12/3/e228963/F1. large.jpg

Common Risk Factors

11. Zhao et al. 2024
 12. Rathleff et al. 2020
 13. Hall et al. 2015

Quadriceps Muscle Stiffness

Emerging evidence for risk factor

Enomoto et al (2021): <u>Shear wave elastopgraphy</u>

Rectus Femoris tissue stiffness – Performance adaptation

Inappropriate for immature skeleton

Future direction for research, intervention?

Other Factors

Changing thoughts

-

-

- Patellar/Patellofemoral morphology – inconclusive^{6,15}
- BMI weak correlation¹⁶

Emerging findings

- Tibial morphology: posterior tibial slope¹⁶
- Patellar tendon insertion: Area of attachment and proximity^{6,16}

15. Kamel et al. 2021 16. Lucenti et al. 2022

Management

Usual Care for OSD¹⁷

- Exercise
- Cryotherapy
- Taping/strapping
- Stretching
- Advice & education
- Physical activity/sports modification

THE UNIVERSITY OF QUEENSLAND

Management Principles & Barriers

- Primary principle: Load management & Pain relief
- Complete rest: Inappropriate, no longer followed¹⁸
- Most clinicians agree on the need for exercise intervention^{17,19}
- No consensus on best practice¹⁸
 - No guidelines for exercise dosage, self-management or adjunct therapies.

18. Neuhaus et al. 2021 19. Kabiri et al. 2014

Activity Modification & Knee Strengthening

Rathleff et al 2020

Block 1: 0-4 weeks

- Glute Bridge
- Isometric Knee
 Extension

Block 2: 5-12 weeks

- Wall squat bodyweight squat
- Progress to lunge

- Activity Ladder
- Pain <3/10
- Education: Pathology & Management

At 12 Months:

- 90% successful outcome
- 69% returned to sports

SOGOOD Trial

Krommes et al. 2024

- Based on Rathleff et al. 2020
 - Addition of dynamic balance and alignment exercises
- Exercise vs usual care

- Self-management central component

What's Next?

Gaps in our knowledge

- Need for consistent exercise protocols
- High heterogeneity in intervention studies
- Lack of clinical guidelines
- Effectiveness/Risks of adjunct treatments: e.g. manual therapy, patellar tendon straps, injection

- Why do some patients not achieve good outcomes?

Thank you

Bixiang (Sean) Cheng Bphty, Mphty (Musc) Student bixiang.cheng@student.uq.edu.au

linkedin.com/in/sean-c-70532593

CRICOS 00025B • TEQSA PRV12080

References

1. Sørensen LB, Rathleff MS, Dean BJF, Oei E, Magnusson SP, Olesen JL, et al. A systematic review of imaging findings in patients with Osgood-Schlatter disease. Translational Sports Med [Internet]. 2021 Oct 2;4(6):772–87. Available from: http://dx.doi.org/10.1002/tsm2.281

2. Ciatawi K, Dusak IWS. Osgood-Schlatter disease: a review of current diagnosis and management. Current Orthopaedic Practice [Internet]. 2022 Mar 10;33(3):294–8. Available from: http://dx.doi.org/10.1097/BCO.000000000001110

3. Bruzda R, Wilczyński B, Zorena K. Knee function and quality of life in adolescent soccer players with Osgood Shlatter disease history: a preliminary study. Sci Rep [Internet]. 2023 Nov 6;13(1). Available from: http://dx.doi.org/10.1038/s41598-023-46537-7

4. Holden S, Olesen JL, Winiarski LM, Krommes K, Thorborg K, Hölmich P, et al. Is the Prognosis of Osgood-Schlatter Poorer Than Anticipated? A Prospective Cohort Study With 24-Month Follow-up. Orthopaedic Journal of Sports Medicine [Internet]. 2021 Aug 1;9(8). Available from: http://dx.doi.org/10.1177/23259671211022239

5. Mun F, Hennrikus WL. Surgical Treatment Outcomes of Unresolved Osgood-Schlatter Disease in Adolescent Athletes. Canavese F, editor. Case Reports in Orthopedics [Internet]. 2021 Mar 17;2021:1–5. Available from: http://dx.doi.org/10.1155/2021/6677333

6. Sørensen LB, Holden S, Oei EHG, Magnusson SP, Olesen JL, Dean BJF, et al. A comprehensive <scp>MRI</scp> investigation to identify potential biomarkers of Osgood Schlatter disease in adolescents: A cross sectional study comparing Osgood Schlatter disease with controls. Scandinavian Med Sci Sports [Internet]. 2024 Apr 29;34(5). Available from: http://dx.doi.org/10.1111/sms.14634

7. Holden S, Lyng K, Olesen JL, Sørensen LB, Rathleff MS. Understanding the Interactions Between Loading, Pain Dynamics, and Imaging Characteristics for Osgood Schlatter: A Cross-Sectional Study. Scandinavian Med Sci Sports [Internet]. 2024 Sep;34(9). Available from: http://dx.doi.org/10.1111/sms.14729

References cont.

8. Yun L, Fein DM. Osgood-Schlatter and Sever Diseases. Pediatrics in Review [Internet]. 2024 Jul 1;45(7):422–4. Available from: http://dx.doi.org/10.1542/pir.2023-006037

9. Martínez Estupiñan LM, Martínez Aparicio L, Martínez Aparicio L, Morales Piñéiro S, Ibañez Zamora E. Clinical Radiological and Pathological considerations of Epiphysitis and Apophysitis. COTC [Internet]. 2021 Dec 10;3(1):01–6. Available from: http://dx.doi.org/10.31579/2694-0248/016

10. Caine D, Nguyen JC, Grady M, editors. Physeal Stress Injuries in Young Athletes [Internet]. Contemporary Pediatric and Adolescent Sports Medicine. Springer Nature Switzerland; 2024. Available from: http://dx.doi.org/10.1007/978-3-031-70455-0

11. Zhao ZY, Zhang HR, Zhou FZ, Wang A, Liu XN. Tibial tubercle avulsion fracture following preexisting Osgood-Schlatter disease in an adolescent: a case report. J Int Med Res [Internet]. 2024 Apr;52(4). Available from: http://dx.doi.org/10.1177/03000605241247683

12. Rathleff MS, Winiarski L, Krommes K, Graven-Nielsen T, Hölmich P, Olesen JL, et al. Pain, Sports Participation, and Physical Function in Adolescents With Patellofemoral Pain and Osgood-Schlatter Disease: A Matched Cross-sectional Study. Journal of Orthopaedic & amp; Sports Physical Therapy [Internet]. 2020 Mar;50(3):149–57. Available from: http://dx.doi.org/10.2519/jospt.2020.8770

13. Hall R, Foss KB, Hewett TE, Myer GD. Sport Specialization's Association With an Increased Risk of Developing Anterior Knee Pain in Adolescent Female Athletes. Journal of Sport Rehabilitation [Internet]. 2015 Feb;24(1):31–5. Available from: http://dx.doi.org/10.1123/jsr.2013-0101

14. Enomoto S, Oda T, Sugisaki N, Toeda M, Kurokawa S, Kaga M. Muscle stiffness of the rectus femoris and vastus lateralis in children with Osgood–Schlatter disease. The Knee [Internet]. 2021 Oct;32:140–7. Available from: http://dx.doi.org/10.1016/j.knee.2021.08.001

References cont.

15. Kamel SI, Kanesa-Thasan RM, Dave JK, Zoga AC, Morrison W, Belair J, et al. Prevalence of lateral patellofemoral maltracking and associated complications in patients with Osgood Schlatter disease. Skeletal Radiol [Internet]. 2021 Jan 6;50(7):1399-409. Available from: http://dx.doi.org/10.1007/s00256-020-03684-6

16. Lucenti L, Sapienza M, Caldaci A, Cristo C, Testa G, Pavone V. The Etiology and Risk Factors of Osgood-Schlatter Disease: A Systematic Review. Children [Internet]. 2022 Jun 2;9(6):826. Available from: http://dx.doi.org/10.3390/children9060826

17. Krommes K, Thorborg K, Hölmich P. Usual care for Osgood Schlatter: A mixed-methods study to understand what caretakers are delivering and patients are receiving. 2021. Abstract from DOS Kongres 2021, København, Denmark.

18. Neuhaus C, Appenzeller-Herzog C, Faude O. A systematic review on conservative treatment options for OSGOOD-Schlatter disease. Physical Therapy in Sport [Internet]. 2021 May;49:178-87. Available from: http://dx.doi.org/10.1016/j.ptsp.2021.03.002

19. Kabiri L, Tapley H, Tapley S. Evaluation and conservative treatment for Osgood-Schlatter disease: A critical review of the literature. International Journal of Therapy and Rehabilitation [Internet]. 2014 Feb;21(2):91–6. Available from: http://dx.doi.org/10.12968/ijtr.2014.21.2.91

20. Krommes K, Thorborg K, Clausen MB, Rathleff MS, Olesen JL, Kallemose T, et al. Self-management including exercise, education and activity modification compared to usual care for adolescents with Osgood-Schlatter (the SOGOOD trial): protocol of a randomized controlled superiority trial. BMC Sports Sci Med Rehabil [Internet]. 2024 Apr 20;16(1). Available from: http://dx.doi.org/10.1186/s13102-024-00870-0

21. Rathleff MS, Winiarski L, Krommes K, Graven-Nielsen T, Hölmich P, Olesen JL, et al. Activity Modification and Knee Strengthening for Osgood-Schlatter Disease: A Prospective Cohort Study. Orthopaedic Journal of Sports Medicine [Internet]. 2020 Apr 1;8(4). Available from: http://dx.doi.org/10.1177/2325967120911106 23